Những hằng đẳng thức xứng đáng nhớ có thể quen thuộc gì với chúng ta . Hôm ni Kiến tiếp tục rằng kỹ rộng lớn về 7 hằng đẳng thức cần thiết : bình phương của một tổng, bình phương của một hiệu, hiệu của nhị bình phương, lập phương của một tổng, lập phương của một hiệu, tổng nhị lập phương và sau cùng là hiệu nhị lập phương. Các các bạn nằm trong tìm hiểu thêm nhé. Bạn đang xem: 7 hằng đẳng thức đáng nhớ toán 8
1. Bình phương của một tổng
Với A, B là những biểu thức tùy ý, tao có: ( A + B )2 = A2 + 2AB + B2.
Ví dụ:
a) Tính ( a + 3 )2.b) Viết biểu thức x2+ 4x + 4 bên dưới dạng bình phương của một tổng.
Hướng dẫn:
a) Ta có: ( a + 3 )2= a2+ 2.a.3 + 32 = a2 + 6a + 9.
b) Ta sở hữu x2+ 4x + 4 = x2+ 2.x.2 + 22 = ( x + 2 )2.
2. Bình phương của một hiệu
Với A, B là những biểu thức tùy ý, tao có: ( A - B )2 = A2 - 2AB + B2.
3. Hiệu nhị bình phương
Với A, B là những biểu thức tùy ý, tao có: A2 - B2 = ( A - B )( A + B ).
4. Lập phương của một tổng
Với A, B là những biểu thức tùy ý, tao có: ( A + B )3 = A3 + 3A2B + 3AB2 + B3.
5. Lập phương của một hiệu.
Với A, B là những biểu thức tùy ý, tao có: ( A - B )3 = A3 - 3A2B + 3AB2 - B3.
Ví dụ :
a) Tính ( 2x - 1 )3.b) Viết biểu thức x3- 3x2y + 3xy2- y3 dưới dạng lập phương của một hiệu.
Hướng dẫn:
a) Ta có: ( 2x - 1 )3= ( 2x )3 - 3.( 2x )2.1 + 3( 2x ).12 - 13
= 8x3 - 12x2 + 6x - 1
b) Ta sở hữu : x3- 3x2y + 3xy2- y3= ( x )3 - 3.x2.hắn + 3.x. y2 - y3
= ( x - hắn )3
6. Tổng nhị lập phương
Với A, B là những biểu thức tùy ý, tao có: A3 + B3 = ( A + B )( A2 - AB + B2 ).
Chú ý: Ta quy ước A2 - AB + B2 là bình phương thiếu thốn của hiệu A - B.
Ví dụ:
a) Tính 33+ 43.b) Viết biểu thức ( x + 1 )( x2- x + 1 ) bên dưới dạng tổng nhị lập phương.
Hướng dẫn:
a) Ta có: 33+ 43= ( 3 + 4 )( 32 - 3.4 + 42 ) = 7.13 = 91.
b) Ta có: ( x + 1 )( x2- x + 1 ) = x3+ 13 = x3 + 1.
Xem thêm: sin bình x đạo hàm
7. Hiệu nhị lập phương
Với A, B là những biểu thức tùy ý, tao có: A3 - B3 = ( A - B )( A2 + AB + B2 ).
Chú ý: Ta quy ước A2 + AB + B2 là bình phương thiếu thốn của tổng A + B.
Ví dụ:
a) Tính 63- 43.b) Viết biểu thức ( x - 2y )( x2+ 2xy + 4y2) bên dưới dạng hiệu nhị lập phương
Hướng dẫn:
a) Ta có: 63- 43= ( 6 - 4 )( 62 + 6.4 + 42 ) = 2.76 = 152.b) Ta sở hữu : ( x - 2y )( x2+ 2xy + 4y2) = ( x )3 - ( 2y )3 = x3 - 8y3.
B. Bài tập dượt tự động luyện về hằng đẳng thức
Bài 1.Tìm x biết
a) ( x - 3 )( x2+ 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.b) ( x + 1 )3- ( x - 1 )3- 6( x - 1 )2 = - 10.
Hướng dẫn:
a) gí dụng những hằng đẳng thức ( a - b )( a2+ ab + b2) = a3 - b3.( a - b )( a + b ) = a2 - b2.
Khi cơ tao sở hữu ( x - 3 )( x2 + 3x + 9 ) + x( x + 2 )( 2 - x ) = 0.
⇔ x3 - 33 + x( 22 - x2 ) = 0 ⇔ x3 - 27 + x( 4 - x2 ) = 0
⇔ x3 - x3 + 4x - 27 = 0
⇔ 4x - 27 = 0
Vậy x= .
( a + b )3 = a3 + 3a2b + 3ab2 + b3
( a - b )2 = a2 - 2ab + b2
Khi cơ tao có: ( x + 1 )3 - ( x - 1 )3 - 6( x - 1 )2 = - 10.
⇔ ( x3 + 3x2 + 3x + 1 ) - ( x3 - 3x2 + 3x - 1 ) - 6( x2 - 2x + 1 ) = - 10
⇔ 6x2 + 2 - 6x2 + 12x - 6 = - 10
⇔ 12x = - 6
Vậy x=
Bài 2: Rút gọn gàng biểu thức A = (x + 2y ).(x - 2y) - (x – 2y)2
- 2x2+ 4xy B. – 8y2+ 4xy
- - 8y2 D. – 6y2+ 2xy
Hướng dẫn
Ta có: A = (x + 2y ). (x - 2y) - (x – 2y)2
A = x2 – (2y)2 – [x2 – 2.x.2y +(2y)2 ]
A = x2 – 4y2 – x2 + 4xy - 4y22
Xem thêm: chia đa thức cho đa thức lớp 8
A = -8y2 + 4xy
- Hãy lưu giữ nó nhé
Những hằng đẳng thức xứng đáng nhớ bên trên rất rất cần thiết tủ kỹ năng của tất cả chúng ta . Thế nên chúng ta hãy phân tích và ghi lưu giữ nó nhé. Những đẳng thức cơ canh ty tất cả chúng ta xử lý những việc dễ dàng và khó khăn một cơ hội đơn giản, chúng ta nên thực hiện đi làm việc lại nhằm phiên bản thân ái hoàn toàn có thể áp dụng chất lượng rộng lớn. Chúc chúng ta thành công xuất sắc và chịu khó bên trên con phố tiếp thu kiến thức. Hẹn chúng ta ở những bài xích tiếp theo
Bình luận